Measurements on a single crystal of the electrical conductivity in the range $90-400 \mathrm{~K}$ showed the compound to be a semiconductor with an activation energy close to 0.07 eV .

We wish to thank Dr Karl-Axel Wilhelmi for valuable discussions and Professor Arne Magnéli for his kind interest. Thanks are also due to Dr Sven Westman for revising the English text and to Mr Tomasz Niklewski for measurements of the density and the electrical conductivity.

The investigation has been financially supported by the Swedish Natural Science Research Council.

References

Forslund, B. (1975). Fourth Scandinavian Symposium on Thermal Analysis.
Galy, J., Darriet, J. \& Hagenmuller, P. (1971). Rev. Chim. Minér. 8, 509-522.

Hagenmuller, P. (1973). Comprehensive Inorganic Chemistry, edited by A. F. Trotman-Dickenson. Néw York: Pergamon.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Lucács, I., Strusievici, C. \& Liteanu, C. (1971). Rev. Roumaine Chim. 16, 245-254.
McMaster, W. H., Kerr del Grande, N., Mallet, J. H. \& Hubrel, J. H. (1969). Compilation of X-ray Cross Sections, UCRL-50174, Sec. II, Rev. 1.
Mumme, W. G. \& Watts, J. A. (1971). J. Solid State Chem. 1,310-318.
Niklewski, T., Kihlborg, L., Nygren, M. \& Sävborg, Ö. (1975). Chem. Commun. Unil. Stockholm, 12, 1-13.

Waltersson, K. \& Forslund, B. (1977a). Acta Cryst. B33, 775-779.
Waltersson, K. \& Forslund, B. (1977b). Acta Cryst. B33, 784-789.
Waltersson, K. \& Forslund, B. (1977c). Acta Cryst. B33,-789-793.
Waltersson, K., Forslund, B., Wilhelmi, K.-A., Andersson, S. \& Galy, J. (1974). Acta Cryst. B30, 2644-2652.

Acta Cryst. (1977). B33, 784-789

The Crystal Structure of $\mathbf{C s}_{\mathbf{2}} \mathbf{V}_{\mathbf{5}} \mathbf{O}_{\mathbf{1 3}}$

By Kjell Waltersson and Bertil Forslund
Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm, Fack, S-104 05 Stockholm, Sweden

(Received 12 April 1976; accepted 20 August 1976)

Abstract

The crystal structure of $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ has been determined and refined to a final R_{41} value of 0.019 from 267 in dependent reflexions and 35 variables. Three-dimensional X-ray diffractometer data (Mo Ka radiation) were used. The space group is $I 4 \mathrm{~mm}$ (No. 107), and the unit-cell dimensions are $a=7.762(1), c=11.746$ (2) \AA, $V=707.7 \AA, Z=2$. The new structure type can be visualized in different, complementary ways; it can be regarded as composed of VO_{4} tetrahedra and VO_{5} square pyramids in the ratio $4: 1$ (joined exclusively by corner-sharing) forming ${ }_{\infty}^{2}\left(\mathrm{~V}_{5} \mathrm{O}_{13}^{2-}\right)$ layers, held together by Cs^{+}ions; or composed of isolated isocyclic rings of $\mathrm{V}_{4} \mathrm{O}_{12}^{4-}$ tetramers and VO^{2+} (vanadyl) and Cs^{+}ions. The observed, averaged $\mathrm{V}-\mathrm{O}$ distances for the fourand five-coordinated V atoms are 1.71 and $1.96 \AA$ respectively; the $\mathrm{V}-\mathrm{O}$ distance in the vanadyl ion is $1.587(16) \AA$. The Cs^{+}ions have twelve nearest O neighbours in the range $3 \cdot 24-3 \cdot 54 \AA$. The structure is compared with those of $\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{O}_{8}$ and $\mathrm{K}_{3} \mathrm{~V}_{5} \mathrm{O}_{14}$.

Introduction

During recent years, the formation conditions, crystal structures and physical properties (electrical and magnetic) of binary vanadium(IV,V) oxides and ternary, heavy alkali-metal vanadium(IV, V) oxides have been investigated at this Institute. The structures of the following compounds have been studied: $\mathrm{Cs}_{0}{ }_{35} \mathrm{~V}_{3} \mathrm{O}_{7}$ (Waltersson \& Forslund, 1977a), $\mathrm{Cs}_{0}{ }_{3} \mathrm{~V}_{2} \mathrm{O}_{5}$ (Waltersson \& Forslund, 1977b), and $\mathrm{CsV}_{2} \mathrm{O}_{5}$ (Waltersson \& Forslund, 1977c).

Reid \& Watts (1970) reported the synthesis of a new, reduced, ternary caesium vanadium oxide with tetragonal symmetry. Unit-cell dimensions were $a=$ 7.72 and $c=11.73 \AA$. The compound was tentatively given the formula $\mathrm{Cs}_{0.94} \mathrm{~V}_{2} \mathrm{O}_{53}$. The preparative technique used was electrolysis at $540^{\circ} \mathrm{C}$ of a melt containing $37 \mathrm{~mol} \% \mathrm{Cs}_{2} \mathrm{O}$ and $63 \mathrm{~mol} \% \mathrm{~V}_{2} \mathrm{O}_{5}$. Fotief \& Golofkin (1972) also reported the preparation (by heating mixtures of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and $\mathrm{V}_{2} \mathrm{O}_{5}$ at $500^{\circ} \mathrm{C}$ in vacuum) of a tetragonal phase with a suggested composition of $\mathrm{CsV}_{3} \mathrm{O}_{7}$. The powder pattern was consis-
tent with the cell given by Reid \& Watts (see also Volkov, Curat \& Fotief, 1974). The present paper reports the crystal-structure determination of the tetragonal phase.

Experimental

Polycrystalline, pure (as judged from powder-pattern data) samples of the new tetragonal compound were obtained after reaction of $\mathrm{CsVO}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5}$ and $\mathrm{V}_{2} \mathrm{O}_{3}$, in the mole ratio ($8: 5: 1$), in evacuated silica tubes at $450^{\circ} \mathrm{C}$ for one month.

Table 1. Powder pattern of $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$

$$
\begin{aligned}
& \mathrm{Cu} K a_{1} \text { radiation }\binom{\lambda=1.54050 \AA}{a} . \text { Internal standard } \mathrm{KCl}, \\
& a=6.2930 \AA .
\end{aligned}
$$

hkl	$d_{\text {obs }}$	$10^{5} \sin ^{2} \theta_{\text {obs }}$	$10^{5} \sin ^{2} \theta_{\text {calc }}$	$I_{\text {obs }}$
002	5.858	1729	1720	viw
110	5.470	1983	1969	s
112	4.002	3705	3689	vs
200	3.880	3942	3938	viw
103	3.495	4858	4855	m
121	3.328	5357	5353	m
202	3.235	5669	5659	is
004	2.936	6881	6880	m
220	2.743	7884	7877	is
114	2.589	8854	8850	s
222	2.487	9595	9597	w
310	2.456	9840	9846	m
204	2.3427	10810	10819	iw
312	2.2649	11566	11566	m
105	2.2494	11726	11735	vow
303	$2 \cdot 1590$	12728	12732	vow
224	2.0056	14750	14757	m
400	1.9405	15756	15754	s
323	1.8866	16669	16670	w
314	1.8834	16725	16726	m
116	1.8444	17440	17450	w
026	1.7473	19432	19419	s
413	1.6967	20608	20609	puw
422	1.6649	21405	21412	is
404	1.6189	22636	22634	m
325	1.5871	23555	23551	vo
334	1.5530	24598	24603	w
501	1.5395	25034	25045	nw
316	1.5305	25329	25327	m
510	1.5228	25586	25600	nw
217	1.5112	25980	25994	yw
512	1.4738	27314	27320	m
503	1.4430	28494	28485	vw
521	1.4310	28973	28984	w
118	1.4180	29505	29491	vow
440	1.3720	31517	31507	w
514	1.3516	32478	32480	m
336	1.3368	33201	33204	vw
426	1.2987	35174	35173	m
602	1.2634	37167	37166	w
318	1. 2602	37356	36368	vo
444	1. 2430	38397	38388	w
525	1.2285	39310	39304	ıw
620	1.2272	39393	39384	w
534	1.2123	40368	40357	w
408	1.1709	43272	43275	w

Crystals suitable for single-crystal X-ray work were grown from mixtures of $\mathrm{CsVO}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5}$ and $\mathrm{V}_{2} \mathrm{O}_{3}$ (8:4:1) (corresponding to $\mathrm{Cs}_{0.89} \mathrm{~V}_{2} \mathrm{O}_{5.22}$ or $\mathrm{Cs}_{1.33} \mathrm{~V}_{3} \mathrm{O}_{7.83}$), which were heated in evacuated silica tubes at $550^{\circ} \mathrm{C}$ for one week.
The reddish-brown crystals are plate-like and opaque. They are not affected by dilute ammonia. The Cs / V ratio was determined by means of atomic absorption spectroscopy (for crystals selected from different samples) and found to be 0.39 . The density, measured by hydrostatic weighing (Niklewski, Kihlborg, Nygren \& Sävborg, 1975), was $3.39 \mathrm{~g} \mathrm{~cm}^{-3}$.
The powder photographs were taken with a Guinier-Hägg camera at $20^{\circ} \mathrm{C}, \mathrm{Cu} K \alpha_{1}$ radiation, and KCl as an internal standard ($a=6 \cdot 2930 \AA$; Hambling, 1953). Least-squares refinement of the cell parameters gave $a=7.762(1)$ and $c=11.746$ (2) \AA. The powder pattern is listed in Table 1.

The selection of a suitable crystal for the intensity data collection and the determination of the systematic extinctions were performed by X-ray photographic methods (oscillation and Weissenberg techniques). The crystal used was $0.10 \times 0.10 \times 0.01(c) \mathrm{mm}$, and was mounted along the crystallographic c axis.

The X-ray intensity data were collected on a Siemens AED automatic diffractometer with graphite-monochromatized Mo $K \alpha$ radiation, and a scintillation counter with pulse-height discrimination.

The $\theta-2 \theta$ scan technique was used. Each lattice point was measured with the five-values technique. The scan range for the individual reflexions was: $+\Delta \theta=$ $0.54+0.28 \operatorname{tg} \theta$, and $-\Delta \theta=0.51+0.28 \operatorname{tg} \theta$. The intensity measurement was taken in steps of 0.01° in θ, with a maximum step-time of 1.20 s . For strong reflexions the automatic attenuator mechanism was set to add attenuation filters. Three standard reflexions were measured after every 47th lattice point; these indicated no deterioration of the crystal.

All the possible reflexions (systematic extinctions excluded) within one octant of the reciprocal-lattice sphere with $\theta \leq 30^{\circ}$ were registered, giving a total number of 616 observations.

The net intensity I_{n} was calculated as $I_{t}-I_{b}$, and the estimated standard deviation was obtained as $\sigma\left(I_{n}\right)=$ $\left(I_{t}+I_{b}\right)^{1 / 2} .477$ reflexions were judged significant from the criterion $\sigma\left(I_{n}\right) / I_{n} \leq 0.40$.

Lorentz-polarization, absorption, and preparatory extinction corrections were applied to the data. The calculated linear-absorption coefficient, $\mu($ Mo $K \alpha)=$ $85.2 \mathrm{~cm}^{-1}$, was used in computing a transmission factor for each reflexion (International Tables for X-ray Crystallography, 1962). The absorption was estimated by the Gaussian integration method with $12 \times 12 \times 4$ grid-points. The factor t in the formula $I=\operatorname{Lp} \times I_{n} / t$ ranged from 0.423 to 0.934 . The calculations were performed on IBM 1800 and IBM 360/75 computers.

Structure determination and refinement

The reflexions systematically absent were $h+k+l$ odd, which indicates space groups $14 / \mathrm{mmm}$ (No. 139), $142 m$ (No. 121), $14 m 2$ (No. 119), $14 m m$ (No. 107), $I 422$ (No. 97), $I 4 / m$ (No. 87), $I 4$ (No. 82), and $I 4$ (No. 79).

A careful investigation of the absorption-corrected structure amplitudes confirmed the Laue symmetry to be $4 / \mathrm{mmm}$, and this excluded space groups $I 4 / \mathrm{m}, I 4$, and $I 4$. The number of observations was now reduced to 267 independent reflexions, with $h \geq k$. As the chemical analysis was not thought to give conclusive evidence of the composition of the compound, the structure determination was undertaken without making any assumption about the number of atoms of the various atomic species. The investigation was started with the assumption that the space group $14 / \mathrm{mmm}$ was correct. From a three-dimensional Patterson synthesis, tentative coordinates of Cs and V atoms were derived in point sets $4(d)$ and $8(h)$ respectively. In a following difference Fourier synthesis the peaks due to another set of V atoms were located in $4(e)$. This was found, however, to give unreasonably short $\mathrm{V}-\mathrm{V}$ distances ($2.3 \AA$), which excluded the symmetry $14 / \mathrm{mmm}$. Therefore the structure determination was continued in the noncentrosymmetric space group 14 mm (No. 107). All the peaks in the Patterson map were now explained

Table 2. The crystal structure of $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$
$\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}, M_{r}=728.51$. Space group I 4 mm (No. 107). Cell dimensions: $a=7.762(1), c=11.746$ (2) $\AA, V=707.68 \AA^{3}$. Cell content: $2 \mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13} \cdot D_{\text {obs. }}=3 \cdot 39, D_{\text {calc. }}=3 \cdot 40 \mathrm{~g} \mathrm{~cm}^{-3}$.

Atom (n)	Point set	x	y	z
Cs	$4(b)$	0	$\frac{1}{2}$	$\frac{1}{4}$
$\mathrm{~V}(1)$	$8(c)$	$0.22394(12)$	$0.22394(12)$	$0.00292(47)$
$\mathrm{V}(2)$	$2(a)$	0	0	$0.64934(36)$
$\mathrm{O}(1)$	$8(c)$	$0.31644(72)$	$0.31644(72)$	$0.11637(79)$
$\mathrm{O}(2)$	$8(c)$	$0.30588(92)$	$0.30588(92)$	$0.89022(83)$
$\mathrm{O}(3)$	$8(d)$	$0.27149(105)$	0	$-0.01040(118)$
$\mathrm{O}(4)$	$2(a)$	0	0	$0.78442(139)$

with Cs atoms in point set $4(b)$, and V atoms in $8(c)$ and $2(a)$. With least-squares methods, the metal positions were refined and the new coordinates were used for a further ($F_{\text {obs. }}-F_{\text {metal }}$) synthesis. The conventional R value at this stage was $0 \cdot 12$.
In the following difference Fourier synthesis, O atoms were identified in point sets $8(c), 8(d)$ and $2(a)$. With these O positions included, the R value rapidly dropped to 0.05 . The result of the structural analysis shows beyond reasonable doubt that the formula of the compound is $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$.
The structure was refined by means of a full-matrix least-squares program. In the final cycles of refinement, anisotropic temperature factors and isotropic extinction corrections, altogether 35 variables, were included. The scattering factors used were for neutral atoms (McMaster, Kerr del Grande, Mallet \& Hubbel, 1969) and the Δf^{\prime} and $\Delta f^{\prime \prime}$ values for Mo $K a$ radiation were taken from International Tables for X-ray Crystallography (1962). The quantity minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. The final R and R_{w} values were 0.0313 and 0.0194 respectively. Statistical weights were applied to the structure factors.*

The space group 14 mm is unambiguously determined by the positions of $V(2)$ and $\mathrm{O}(4)$ in point set $2(a)$. Therefore the space groups $I \overline{4} m 2, I \overline{4} 2 m$ and I 422 were also excluded.

The final positional and thermal parameters, together with their estimated standard deviations and numerical values of the r.m.s. displacements, are given in Tables 2 and 3. The most important distances and angles are given in Table 4. The V - O distances, corrected for thermal motion according to the riding-motion model, are included.
In a final three-dimensional ($F_{o}-F_{c}$) synthesis, the maximum residual peak showed a height of 16% of the smallest O peak in the corresponding F_{o} synthesis.

[^0]Table 3. Final anisotropic temperature factors defined as $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$
$\beta_{i J}$ values are given in $\dot{\AA}^{2} \times 10^{5}$, e.s.d.s are within parentheses. The r.m.s. components (R_{i}) of thermal displacements along the ellipsoid axes and the r.m.s. radial (R) thermal displacements are included.

Atom (n)	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	R_{1}	R_{2}	R_{3}	R
Cs	$868(46)$	$828(44)$	$359(6)$	0	0	0	0.158	0.159	0.163	0.277
$\mathrm{~V}(1)$	$354(13)$	$354(13)$	$429(12)$	$73(25)$	$165(74)$	$165(74)$	0.088	0.093	0.188	0.277
$\mathrm{~V}(2)$	$344(33)$	$344(33)$	$271(30)$	0	0	0	0.102	0.138	0.138	0.200
$\mathrm{O}(1)$	$1017(101)$	$1017(101)$	$1160(82)$	$30(256)$	$-608(145)$	$-608(145)$	0.099	0.174	0.321	0.378
$\mathrm{O}(2)$	$1758(145)$	$1758(145)$	$208(81)$	$1192(367)$	$-12(189)$	$-12(189)$	0.120	0.131	0.300	0.349
$\mathrm{O}(3)$	$1035(137)$	$338(90)$	$808(137)$	0	$135(232)$	0	0.101	0.174	0.241	0.313
$\mathrm{O}(4)$	$1406(251)$	$1406(251)$	$204(130)$	0	0	0	0.119	0.207	0.207	0.316

Description and discussion of the crystal structure

The crystal structure of $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ is shown in Fig. 1. For the numbering of the atoms see Table 2 and Fig. 2. The unit cell contains ten V atoms in eight four-coordinated $\mathrm{V}(1) \mathrm{O}_{4}$ tetrahedra, and two five-coordinated $\mathrm{V}(2) \mathrm{O}_{5}$ square pyramids. The structure can be regarded as built up of $\left(\mathrm{V}_{5} \mathrm{O}_{17}\right)$ units, composed of one central square pyramid and four tetrahedra linked together by corner-sharing. By further corner-sharing the $\left(\mathrm{V}_{5} \mathrm{O}_{17}\right)$ units are linked together by eight shared oxygens to layers with the composition ${ }_{\infty}^{2}\left(\mathrm{~V}_{5} \mathrm{O}_{13}\right)^{2-}$. The layers are situated at $z \sim 0$ and $z \sim \frac{1}{2}$.

Table 4. Interatomic distances (\AA) and bond angles (${ }^{\circ}$) in $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$

The e.s.d.'s in the last decimal place are given within parentheses.
(a) $\mathrm{V}(1) \mathrm{O}_{4}$ tetrahedron

Metal-oxygen distances

	Uncorrected	Corrected
$\mathrm{V}(1)-\mathrm{O}(2)$	1.600 (10)	1.615
-O(1)	1.676 (9)	1.706
-O(3) (2x)	1.784 (3)	1.797
Metal-metal separations		
$\mathrm{V}(1)-\mathrm{V}(1)$ (2x)	$\mathrm{V}(1)-\mathrm{V}(2)$	3.484 (4)
	Bond angles	Oxygen-oxygen distances
$\mathrm{O}(1)-\mathrm{V}(1)-\mathrm{O}(2)$	108.5 (5)	2.659 (13)
-O(3) (2x)	$113 \cdot 5$ (5)	2.893 (10)
$\mathrm{O}(2)-\mathrm{V}(1)-\mathrm{O}(3)(2 \mathrm{x})$	103.5 (5)	$2 \cdot 659$ (10)
$\mathrm{O}(3)-\mathrm{V}(1)-\mathrm{O}(3)$	113.3 (5)	2.980 (12)
$\mathrm{V}(1)-\mathrm{O}(3)-\mathrm{V}(1)$	154.0 (6)	

(b) $\mathrm{V}(2) \mathrm{O}_{5}$ square pyramid

	Uncorrected	Corrected
$\mathrm{V}(2)-\mathrm{O}(4)(4 \mathrm{x})$	$1.587(16)$	1.607
$-\mathrm{O}(1)(4 \mathrm{x})$	$2.052(8)$	2.075
Metal-metal separations		
$\mathrm{V}(2)-\mathrm{V}(1)(4 \mathrm{x})$	$3.484(4)$	
	Bond	Oxygen-oxygen
	angles	distances
$\mathrm{O}(1)-\mathrm{V}(2)-\mathrm{O}(1)(4 \mathrm{x})$	$88.0(1)$	$2.850(11)$
$-\mathrm{O}(4)(4 \mathrm{x})$	$100.9(3)$	$2.821(14)$
$-\mathrm{O}(1)(2 \mathrm{x})$	$158.3(12)$	$4.030(11)$

(c) Cs coordination sphere

$\mathrm{Cs}-\mathrm{O}(1)(4 \mathrm{x})$	$3.244(5)$	$\mathrm{Cs}-\mathrm{O}(3)(2 \mathrm{x})$	$3.536(13)$
$-\mathrm{O}(2)(4 \mathrm{x})$	$3.259(5)$	$-\mathrm{O}(4)(2 \mathrm{x})$	$3.902(2)$

The layers are held together by Cs ions. The terminal apical oxygens of the square pyramids and the unshared oxygens of the tetrahedra are pointing in opposite directions. The mean value of the $\mathrm{V}-\mathrm{O}$ separations in the square pyramid is $1.96 \AA$, and the corresponding value for the tetrahedron is $1.71 \AA$.

The different functions of the \mathbf{O} atoms can be summarized in the following way. The unshared oxygens, $O(2)$ and $O(4)$, belong to the tetrahedra and the square pyramids respectively. The distances $\mathrm{V}(1)-\mathrm{O}(2)$ and $\mathrm{V}(2)-\mathrm{O}(4)$ are 1.600 (10) and 1.587 (16) \AA; the latter V -O separation is the shortest observed in the structure.

The $\mathrm{O}(1)$ and $\mathrm{O}(3)$ atoms belong to two $\mathrm{V}-\mathrm{O}$ polyhedra: the $\mathrm{O}(1)$ atom to one tetrahedron and one square pyramid, the $O(3)$ atom being the common corner of two tetrahedra. The $\mathrm{V}(1)-\mathrm{O}(1)$ and $\mathrm{O}(1)-$ $\mathrm{V}(2)$ distances are 1.676 (9) \AA and 2.052 (8) \AA respectively. The bridging oxygen atom $\mathrm{O}(3)$ forms two equally long distances [$\mathrm{V}(1)-\mathrm{O}(3)]$ of $1 \cdot 784$ (3) \AA.

The Cs atom is coordinated to twelve oxygens in the range 3.24-3.54 \AA, mean $3.31 \AA$, in good agreement with the $3.37 \AA$ given in International Tables for X-ray Crystallography (1962). The Cs coordination polyhedron is shown in Fig. 3.

Fig. 1. The structure of $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ projected on (001).

Fig. 2. The $\mathrm{V}(1)$ tetrahedron and the $\mathrm{V}(2)$ square pyramid in $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$. The thermal ellipsoids are drawn at 90% probability.

Considering only the primary cation and anion coordination numbers, the formula of $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ can be written ${ }^{[12]} \mathrm{Cs}_{2}{ }^{[5]} \mathrm{V}^{14} \mathrm{O}_{8}{ }^{[11} \mathrm{O}_{5}$.

Interesting structural relations exist between $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ and both $\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{O}_{8}$ (Galy \& Carpy, 1975) and $\mathrm{K}_{3} \mathrm{~V}_{5} \mathrm{O}_{14}$ (Byström \& Evans, 1959).
$\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{O}_{8}$ [or $\mathrm{K}_{2}(\mathrm{VO}) \mathrm{V}_{2} \mathrm{O}_{7}$] is isostructural with the mineral fresnoite, $\mathrm{Ba}_{2}(\mathrm{TiO}) \mathrm{Si}_{2} \mathrm{O}_{7}$ (Massé, Grenier \& Durif, 1967; Moore \& Louisnathan, 1967, 1969). In the latter the Ti atom is five-coordinated with tetrag-onal-pyramidal geometry. All the basal O atoms of the $\mathrm{Ti}-\mathrm{O}$ square pyramid are shared by the adjacent SiO_{4} tetrahedra, and the SiO_{4} tetrahedra are joined in pairs forming $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups. The TiO pyramid and the $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups are linked into 'heterocyclic' fivemembered rings, forming layers which are held together by $\mathrm{Ba}-\mathrm{O}$ bonds.
In $\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{O}_{8}$ each tetrahedron is in contact with two square pyramids (and one tetrahedron), with $\mathrm{V}-\mathrm{O}$ distances of 1.699 (5) \AA - to be compared with the somewhat shorter $\mathrm{V}(1)-\mathrm{O}(1)$ distance of $1.676(9) \AA$ in $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$. The bridging $\mathrm{V}-\mathrm{O}$ distances in the $\mathrm{V}_{2} \mathrm{O}$, groups are of the same magnitude in the two compounds, viz. 1.794 (4) and 1.784 (3) \AA respectively. However, the angle $\mathrm{V}(1)-\mathrm{O}(3)-\mathrm{V}(1)$ in the ion $\mathrm{V}_{4} \mathrm{O}_{12}^{4-}$ is considerably larger (154.0°) in the Cs than in the K compound. This difference is explained by the fourmembered isocyclic ring $\left(\mathrm{V}_{4} \mathrm{O}_{12}^{4-}\right)$ in $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$, contra the $\mathrm{V}_{2} \mathrm{O}_{7}^{4}$ group in $\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{O}_{8}$. The short $\mathrm{V}-\mathrm{O}$ distance in the pyramid in $\mathrm{K}_{2} \mathrm{~V}_{3} \mathrm{O}_{8}$ is 1.582 (5) \AA, i.e. exactly the same distance as observed in $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ (see above).
A detailed analysis of the V -O distances in $\mathrm{K}_{3} \mathrm{~V}_{5} \mathrm{O}_{14}$ is hampered by the fact that the structure determination is of a preliminary character. Nevertheless, the architecture of $\mathrm{K}_{3} \mathrm{~V}_{5} \mathrm{O}_{14}$ is of interest in this context. The five pentavalent V atoms form almost regular five-membered rings of square pyramids and trigonal pyramids (distorted tetrahedra), joined by sharing neighbouring basal corners with the V atoms nearly in the same plane. All apices point in the same direction (along c), with short $\mathrm{V}-\mathrm{O}$ distances of $1 \cdot 5-1.6 \AA$. The opposite V -O distances in all polyhedra are too long ($\sim 3.4 \AA$) for bonding. The two-dimensional network, ${ }_{\infty}^{2} \mathrm{~V}_{5} \mathrm{O}_{14}^{3-}$, is held together by inserted K ions.

Fig. 3. The Cs coordination polyhedron in $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$. The thermal ellipsoids are drawn at 90% probability.

The fact that the mean bond distance between a central atom (X) and its surrounding O atoms is relatively constant for the same coordination and oxidation numbers of the atom X has been emphasized by several authors, e.g. $\mathrm{X}=\mathrm{S}$ (Baur, 1964); $\mathrm{X}=\mathrm{Cr}$ (Wilhelmi, 1966; Löfgren, 1974); X = P (Baur \& Khan, 1970); $\mathrm{X}=\mathrm{P}, \mathrm{As}, \mathrm{V}$ (Shannon \& Calvo, 1973); and $\mathrm{X}=\mathrm{V}$ (Waltersson, Forslund, Wilhelmi, Andersson \& Galy, 1974).

Of course it must be emphasized that such comparisons are only legitimate between structures which are refined to a considerable degree of accuracy, viz. those with estimated standard deviations in the $\mathrm{X}-\mathrm{O}$ distances of $\sim 0.02 \AA$. The number of structures fulfiling this requirement with regard to the vanadium $(I V, V)$ compounds is limited. In $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ (see above) the observed mean $\mathrm{V}-\mathrm{O}$ distances (uncorrected for thermal motion) for the tetrahedra and the square pyramids are 1.71 and $1.96 \AA$ respectively.

If it is assumed that the V^{4+} are situated in the square pyramids and the V^{5+} in the tetrahedra, excellent agreement is obtained for the mean value of the tetrahedra, viz. observed 1.71, compared with the grand mean $1.72 \AA$ (Waltersson et al., 1974). For the square pyramids the situation seems to be quite different. The observed distances in other compounds containing five-coordinated V^{4+} are in the range 1.88-1.90 \AA, compared with the mean distance of $1.96 \AA$ in $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$. If the structure of $\mathrm{Cs}_{2} \mathrm{~V}_{5} \mathrm{O}_{13}$ is described as built up of $\mathrm{V}_{4} \mathrm{O}_{12}^{4-}$ ions, formed by four tetrahedra, fused together by corner-sharing to isocyclic four-membered rings joined by vanadyl (VO^{2+}) and Cs^{+}ions, no contradictory mean distances are observed. The $\mathrm{V}-\mathrm{O}$ distance in the vanadyl group is quite normal, viz. 1-587(16) \AA. Structure determinations of compounds containing such four-membered rings of VO_{4} units appear not to have been reported before. However, results from cryoscopic investigations of aqueous solutions (Jahr \& Schoepp, 1959) indicate the presence of tetrameric ion $\mathrm{V}_{4} \mathrm{O}_{12}^{4-}$. Accurate EMF measurements do not seem to exclude the presence of such a species (Ingri, 1976). The four-membered rings of tetrahedra are a common feature in several silicate structures, e.g. in axinite (Ito \& Takéuchi, 1952), ekanite (Richard \& Perrault, 1972), and baotite (Simonov, 1960). Vanadyl ions have also been found in cavansite and pentagonite structures, dimorphs of $\mathrm{Ca}(\mathrm{VO})\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Evans, 1973). In these structures, layers are formed by a network of Si tetrahedra joined by common corners. The $\mathrm{X}_{4} \mathrm{O}_{12}$ group ($\mathrm{X}=\mathrm{P}$) was first recognized by Pauling \& Sherman (1937) in $\mathrm{Al}\left(\mathrm{PO}_{3}\right)_{3}\left[\right.$ i.e. $\mathrm{Al}_{4}\left(\mathrm{P}_{4} \mathrm{O}_{12}\right)_{3}$], and later confirmed in $\mathrm{Cu}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ (Laügt, Guitel, Tordjman \& Bassi, 1972) and $\mathrm{Mg}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ (for further references see Nord \& Lindberg, 1975).

We wish to thank Dr Karl-Axel Wilhelmi for helpful
discussions and Professor Arne Magnéli for his kind interest. Thanks are also due to Dr Sven Westman for revising the English text and to Mr Tomasz Niklewski for the density measurements.

This investigation has been supported by the Swedish Natural Science Research Council.

References

Baur, W. H. (1964). Acta Cryst. 17, 1361-1369.
Baur, W. H. \& Khan, A. A. (1970). Acta Cryst. B26, 1584-1596.
Byström, A. M. \& Evans, H. T. Jr (1959). Acta Chem. Scand. 13, 377.
Evans, H. T. Jr (1973). Amer. Min. 58, 412-424.
Fotief, A. A. \& Golofkin, B. G. (1972). Zh. Neorg. Khim. 17, 1334-1340.
Galy, J. \& Carpy, A. (1975). Acta Cryst. B31, 1794-1795.
Hambling, P. G. (1953). Acta Cryst. 6, 98.
Ingri, N. (1976). Private communication.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: K ynoch Press.

Ito, T. \& Takéuchi, Y. (1952). Acta Cryst. 5, 202.
Jahr, K. F. \& Schoepp, L. (1959). Z. Naturforsch. 14b, 467-468.
laügt, M., Guitel, J. C., Tordjman, I. \& Bassi, G. (1972). Acta Cryst. B28, 201-208.

Löfgren, P. (1974). Thesis, Univ. of Stockholm.
McMaster, W. H., Kerr del Grande, N., Mallet, J. H. \& Hubbel, J. H. (1969). Compilation of X-ray Cross Sections, UCRL-50174, Sec. II, Rev. 1.

Massé, R., Grenier, J. C. \& Durif, A. (1967). Bull. Soc. Fr. Minér. Crist. 1, 20-23.
Moore, P. B. \& Louisnathan, J. (1967). Science, 156, 1361-1362.
Moore, P. B. \& Louisnathan, J. (1969). Z. Kristallogr. 130, 438-448.
Niklewski, T., Kihlborg, L., Nygren, M. \& Sävborg, Ö. (1975). Chem. Commun. Univ. Stockholm, 12, 1-13.
Nord, A. G. \& Lindberg, K. B. (1975). Acta Chem. Scand. A29, 1-6
Pauling, L. \& Sherman, J. (1937). Z. Kristallogr. 96, 481-487.
Reid, A. \& Watts, J. A. (1970). J. Solid State Chem. 1, 310-318.
Richard, R. \& Perrault, G. (1972). Acta Cryst. B28, 1994-1999.
Shannon, R. D. \& Calvo, C. (1973). Acta Cryst. B29, 1338-1345.
Simonov, V. I. (1960). Kristallografiya, 5, 544-546.
Volkov, V. L., Curat, L. L. \& Fotief, A. A. (1974). Izv. Akad. Nauk SSSR Neorg. Mater. 10, 181.
Waltersson, K. \& Forslund, B. (1977a). Acta Cryst. B33,775-779.
Waltersson, K. \& Forslund, B. (1977b). Acta Cryst. B33, 780-784.
Waltersson, K. \& Forslund, B. (1977c). Acta Cryst. B33, 789-793.
Waltersson, K., Forslund, B., Wilhelmi, K.-A., Andersson, S. \& Galy, J. (1974). Acta Cryst. B30, 2644-2652.
Wilhelmi, K.-A. (1966). Thesis, Univ. of Stockholm.

Acta Cryst. (1977). B33, 789-793

A Refinement of the Crystal Structure of $\mathrm{Cs}_{2} \mathrm{O}_{5}$

By Kjell Waltersson and Bertil Forslund
Department of Inorganic Chemistry, Arrhenius Laboratory, University of Stockholm, Fack, S-104 05 Stockholm, Sweden

(Received 20 April 1976; accepted 20 August 1976)
The crystal structure of $\mathrm{CsV}_{2} \mathrm{O}_{5}$ has been refined on the basis of three-dimensional X-ray diffractometer data (Mo K α radiation). The structure proposed by Mumme \& Watts [J. Solid State Chem. (1971), 3, 319-322] is confirmed. The structure is monoclinic, $a=7.021(1), b=9.898(2), c=7.783$ (1) $\AA, \beta=90.65(1)^{\circ}, Z=4$, $V=540.8 \AA^{3}$; space group $P 2_{1} / c$ (No. 14). The final R_{w} is 0.027 for 1247 independent reflexions and 74 variables. The compound contains vanadium (V) atoms in tetrahedral coordination, $(\mathrm{V}-\mathrm{O})_{\mathrm{av}}=1.718 \AA$; and vanadium(IV) atoms in square-pyramidal coordination, $(\mathrm{V}-\mathrm{O})_{\mathrm{av}}=1.882 \AA$. No indications of a deviation from the $\mathrm{CsV}_{2} \mathrm{O}_{5}$ stoichiometry have been observed.

Introduction

During electrolysis of caesium vanadate melts, Reid \& Watts (1970) found two new compounds. One was monoclinic with black, plate-like crystals and was
assigned the formula $\mathrm{CsV}_{2} \mathrm{O}_{5}$. A crystal structure analysis by Mumme \& Watts (1971) confirmed this composition. The cell parameters of the monoclinic compound were reported to be $a=7.008$ (5), $b=$ $9.977(5), c=7.729(5) \AA$ and $\beta=90.98(5)^{\circ}$.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32112 (3 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

